Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(29): 36476-36486, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32556996

RESUMO

The goal of this study was to determine the potential exposure of much of the French population to nine phthalates and bis (2-ethylhexyl) adipate (DEHA) due to water consumption. The occurrence of these compounds was investigated in raw and treated water from public water systems. Water samples were collected in one sampling campaign equally distributed across 101 French départements (a French administrative unit) from November 2015 to July 2016. In all, 271 raw water samples and 283 treated water samples were collected. A specific sampling protocol was conducted in order to assess phthalate pollution during sampling and analysis, and to produce reliable results. Field blanks were thus collected at the same time as real samples at each sampling point. The contamination detected in field blanks was due to diethyl phthalate (DEP), dibutyl phthalate (DBP), diisobutyl phthalate (DIBP), and di-2-ethylhexyl phthalate (DEHP), which are common phthalate interferences in blanks. Their concentrations were never ten times higher than the limits of quantification (LOQ). In tap water, the most frequently detected compound was DBP, at a maximum concentration of 1300 ng/L. In raw water, however, DEP was the most frequently detected analyte with concentrations ranging from 255 to 406 ng/L, while DIBP was observed at a maximum concentration of 1650 ng/L. It is worth mentioning that DEHP-the most widely used phthalate-was only detected in one sample of raw water. Phthalates are not concentrated in any particular area of France in either raw or treated water.


Assuntos
Ácidos Ftálicos , Adipatos , França , Água
2.
Arch Environ Contam Toxicol ; 76(2): 206-215, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30515647

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are key ingredients of firefighting foams designed to suppress fires involving flammable and combustible liquids. Such foams are used by firefighters during fire training at dedicated sites. Because PFASs are very persistent chemicals, substantial soil and groundwater contamination has been observed in the vicinity of firefighter training areas. However, very few data are available on PFAS contamination of wastewater and runoff water on such sites. The purpose of this study was to evaluate the occurrence of more than 50 PFASs in 43 water samples (effluent from a wastewater treatment plant (WWTP), lagoon, runoff water, and wastewater drained from firefighter training areas) collected from a large firefighter training site, using target and suspect screening. A comparison of the PFAS classes analyzed revealed the overwhelming contribution of fluorotelomers. This indicates that the PFAS emission from the use of firefighting foams cannot be monitored only by measuring perfluoroalkyl acids. Based on the PFAS concentrations measured through target screening, the PFAS mass discharged into the river receiving WWTP effluent and the lagoon was on average 387 ± 183 kg and 56 ± 15 kg per year respectively. Due to the unavailability of standards, it was impossible to take into account the PFASs detected with suspect screening. The present study emphasizes that, above and beyond soil and groundwater contamination, such sites also contribute to the PFAS burden of surface water.


Assuntos
Bombeiros , Fluorocarbonos/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise
3.
Chemosphere ; 214: 729-737, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30293026

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are utilized in specific firefighting foams. The objectives of this study were i) to map PFAS distribution in the soil and groundwater of a firefighter training site active for more than 3 decades, ii) to locate the main points of entry of PFASs into the aquifer and iii) to identify which PFASs seeped most deeply into the soil. A total of 44 soil cores and 17 groundwater samples were collected. Perfluorooctane sulfonate (PFOS), 6:2 fluorotelomer sulfonic acid (6:2 FTSA) and 6:2 Fluorotelomer sulfonamide alkylbetaine (6:2 FTAB) were the most predominant PFASs in surface soil. The highest total PFAS concentrations (up to 357 µg/g) were measured in two areas. Both areas were considered as potential points of entry of PFASs into the aquifer since PFASs were detected in soil 15 m below the surface, despite the presence of clay layers. The highest total PFAS concentrations were recorded in the monitoring wells located in the perimeter of the firefighter training site and in the spring located downgradient in the direction of groundwater flow. They ranged from 300 to 8300 ng/L. The fluorotelomer 6:2 FTAB was quantified in 6 monitoring wells, suggesting that this FT can reach a water table 20 m below the ground's surface.


Assuntos
Retardadores de Chama/análise , Água Subterrânea/química , Poluentes do Solo/análise , Solo/química , Ácidos Sulfônicos/análise , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos/análise , Bombeiros , Fluorocarbonos/análise
4.
Chemosphere ; 183: 53-61, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28531559

RESUMO

To extinguish large-scale fuel fires, fluorosurfactant based foams (FSBFs) were developed in the 1960s and have been used ever since. In this study, 154 per- and polyfluoroalkyl substances (PFASs) including 122 emerging PFASs used as surfactants in FSBFs were sought in nine different foam concentrates. Field investigations were also carried out in the vicinity of four sites where FSBFs are or were intensively used (two airports, a training center for firefighters and an oil storage depot after a large explosion). In the foam concentrates, only three PFASs were quantified with concentrations ranging from 22,500 to 3,188,000 µg/L. Thirteen emerging PFASs were also identified in these samples based on their mass transitions and intensities. Overall, each foam was a mixture of at least two classes of PFASs. In three concentrates, none of the 122 emerging PFASs were identified as the main ingredient. A perfluoroalkyl acid precursor oxidation assay was therefore performed, and revealed the presence of high amounts of unidentified PFASs. In the vicinity of the four investigated sites, several PFASs were systematically quantified in all of the samples collected downstream of the sites. PFAS profiles were heavily influenced by parameters such as route of PFAS transport after use (runoff, seepage, direct discharge), time elapsed since the cessation of firefighting activities, and firefighting foam composition. The PFAS concentrations found around the investigated sites are the highest recorded in France and resulted in the closure of certain drinking water resources.


Assuntos
Aeroportos , Retardadores de Chama/análise , Fluorocarbonos/análise , Tensoativos/análise , Poluentes Químicos da Água/análise , França
5.
Sci Total Environ ; 583: 393-400, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28117151

RESUMO

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that have been detected in the environment, biota and humans. Drinking water is a route of exposure for populations using water contaminated by PFAS discharges. This research entailed measuring concentrations, mass flows and investigating the fate of dozens PFASs in a river receiving effluents from a fluorochemical manufacturing facility. To measure the total concentration of perfluoroalkyl carboxylic acid (PFCA) precursors, an oxidative conversion method was used. Several dozen samples were collected in the river (water and sediment), in drinking water resources and at different treatment steps on four sampling dates. One PFCA and three fluorotelomers (FTs) were detected up to 62km downstream from the manufacturing facility. 6:2 Fluorotelomer sulfonamide alkylbetaine (6:2 FTAB) was the predominant PFAS with a mass flow of 3830g/day 5.2km downstream from the facility. At all sampling points, PFAS concentrations in sediment were quite low (<6ng/g dw). Five of the 11 investigated wells showed detectable concentrations of PFASs. Interestingly, their profile patterns were different from those observed in the river, suggesting a transformation of PFCA precursors in the sediments of alluvial groundwater. Conventional drinking water treatments (aeration, sand or granular activated carbon filtration, ozonation or chlorination) did not efficiently remove PFASs. Furthermore, an increase in concentration of certain PFASs was observed after ozonation, suggesting that some FTs such as 6:2 FTAB can break down. Only nanofiltration was able to remove all the analyzed PFASs. In the treated water, total PFAS concentrations never exceeded 60ng/L. The oxidative conversion method revealed the presence of unidentified PFCA precursors in the river. Therefore, 18 to 77% of the total PFCA content after oxidation consisted of unidentified chemical species. In the treated water, these percentages ranged from 0 to 29%, relatively and reassuringly low values.


Assuntos
Água Potável/química , Monitoramento Ambiental , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Purificação da Água , Ácidos Alcanossulfônicos/análise , Água Subterrânea/química
6.
Sci Total Environ ; 576: 549-558, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27810744

RESUMO

Although industrial sites producing perfluoroalkyl and polyfluoroalkyl substances (PFASs) may introduce these chemicals into the aquatic environment, they are rarely investigated. This study entailed measuring concentrations, mass flows and the fate of 51 PFASs in an industrial wastewater treatment plant receiving raw effluents from a fluorochemical manufacturing facility. Grab and 24-h composite samples were collected at various stages of wastewater treatment over four sampling campaigns. One perfluoroalkyl carboxylic acid (PFCA) and nine fluorotelomers (FTs) were systematically detected in the facility's raw effluent. The overall PFCA mass flow ranged from 0.6 to 8.6g/day and was negligible compared to the overall mass flow of FTs (from 647 to 2,892g/day). PFCA mass flows increased drastically after secondary treatment (degradation of precursors) and decreased notably after the floatation tank (adsorption onto floatation sludge), but remained at relatively high levels in the final effluent (from 21 to 247g/day). Similar patterns in mass flow were observed for the FTs, with mass loadings discharged into the river ranging from 1,623 to 6,963g/day. Despite analyzing dozens of PFASs, adsorbable organic fluorine determination and oxidative conversion of PFCA precursors showed that a significant part of PFASs remained unidentified. Nevertheless, two overwhelmingly predominant PFASs-6:2 Fluorotelomer sulfonamide alkylbetaine (6:2 FTAB) and 6:2 Fluorotelomer sulfonamide propyl N,N dimethylamine (M4)-were detected and quantified for the first time in water samples, accounting for >75% of the total PFAS mass flow in the final effluent. This study also provided evidence of soil contamination by the aerosol produced over the aeration basin and inadvertent spillage of pieces of sludge cake.

7.
Environ Sci Pollut Res Int ; 24(5): 4916-4925, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27988902

RESUMO

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that have been detected in the environment, biota, and humans. Drinking water is a route of exposure for populations consuming water contaminated by PFAS discharges. This research study reports environmental measurement concentrations, mass flows, and the fate of dozens of PFASs in a river receiving effluents from two fluoropolymer manufacturing facilities. In addition to quantified levels of PFASs using LC- and GC-MS analytical methods, the total amount of unidentified PFASs and precursors was assessed using two complementary analytical methods, absorbable organic fluorine (AOF) determination and oxidative conversion of perfluoroalkyl carboxylic acid (PFCA) precursors. Several dozen samples were collected in the river (water and sediment) during four sampling campaigns. In addition, samples were collected in two well fields and from the outlet of the drinking water treatment plants after chlorination. We estimated that 4295 kg PFHxA, 1487 kg 6:2FTSA, 965 kg PFNA, 307 kg PFUnDA, and 14 kg PFOA were discharged in the river by the two facilities in 2013. High concentrations (up to 176 ng/g dw) of odd long-chain PFASs (PFUnDA and PFTrDA) were found in sediment samples. PFASs were detected in all 15 wells, with concentrations varying based on the location of the well in the field. Additionally, the presence of previously discharged PFASs was still measurable. Significant discrepancies between PFAS concentration profiles in the wells and in the river suggest an accumulation and transformation of PFCA precursors in the aquifer. Chlorination had no removal efficiency and no unidentified PFASs were detected in the treated water with either complementary analytical method. Although the total PFAS concentrations were high in the treated water, ranging from 86 to 169 ng/L, they did not exceed the currently available guideline values.


Assuntos
Água Potável , Fluorocarbonos/análise , Rios , Poluentes Químicos da Água/análise , Flúor , Água Subterrânea , Humanos , Instalações Industriais e de Manufatura , Purificação da Água , Recursos Hídricos
8.
J Chromatogr A ; 1448: 98-106, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27125188

RESUMO

Here, we developed and validated a headspace-solid-phase microextraction-gas chromatography/mass spectrometry (HS-SPME-GC/MS) method for the determination of 14 volatile perfluorinated alkylated substances (PFASs) in water and sediment samples according to SANTE 11945/2015 guidelines. Three fluorotelomer alcohols (FTOHs), two perfluoroalkyl iodides (PFIs), three fluorotelomer iodides (FTIs), four fluorotelomer acrylates and methacrylates (FTACs and FTMACs) and two perfluoroalkyl sulfonamides (FASAs) were analysed simultaneously to assess the occurrence of these compounds from their emission sources to the outlets in water treatment plants. Several SPME parameters were optimised for both water and sediment to maximise responses and keep analysis time to a minimum. In tap water, the limits of quantification (LOQs) were found to be between 20ng/L and 100ng/L depending on the analyte, with mean recoveries ranging from 76 to 126%. For sediments, LOQs ranged from 1 to 3ng/g dry weight depending on the target compound, with mean recoveries ranging from 74 to 125%. SPME considerably reduced sample preparation time and its use provided a sensitive, fast and simple technique. We then used this HS-SPME-GC/MS method to investigate the presence of volatile PFASs in the vicinity of an industrial facility. Only 8:2 FTOH and 10:2 FTOH were detected in a few water and sediment samples at sub-ppb concentration levels. Moreover, several non-target fluorotelomers (12:2 FTOH, 14:2 FTOH and 10:2 FTI) were identified in raw effluent samples. These long-chain fluorotelomers have high bioaccumulative potential in the aquatic environment compared with short-chain fluorotelomers such as 6:2 FTOH and 6:2 FTI.


Assuntos
Acrilatos/análise , Hidrocarbonetos Fluorados/análise , Metacrilatos/análise , Poluentes Químicos da Água/análise , Álcoois/química , Polímeros de Fluorcarboneto , Cromatografia Gasosa-Espectrometria de Massas/métodos , Sedimentos Geológicos/química , Microextração em Fase Sólida , Sulfonamidas/análise
9.
Environ Pollut ; 207: 365-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26452003

RESUMO

This study evaluates the efficiency of two small constructed wetlands installed in the regulatory grass strips between a drained plot and a river. The observed nitrate removal efficiencies were independent of the season or type of constructed wetland and ranged from 5.4 to 10.9% of the inlet amounts. The pesticide mass budgets ranged from -618.5 to 100%, depending on the molecule. The negative efficiencies were attributed to runoff and remobilization. In contrast, the highest efficiencies were associated with pesticides with high Koc and low DT50 (half-life) values, suggesting sorption and degradation. However, the effectiveness of these wetlands is limited for pesticides with low Koc or high DT50 values; thus, the use of these molecules must be reduced. Increasing the number of these small, inexpensive and low-maintenance wetlands in the agricultural landscape would reduce the level of water pollution whilst preserving the extent of cultivated land, but their long-term effectiveness should be evaluated.


Assuntos
Drenagem Sanitária , Recuperação e Remediação Ambiental/métodos , Praguicidas/análise , Poaceae/crescimento & desenvolvimento , Poluentes Químicos da Água/análise , Áreas Alagadas , Agricultura , Meia-Vida , Estações do Ano
10.
Water Res ; 68: 1-11, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25462712

RESUMO

Parabens are esters of para-hydroxybenzoic acid, with an alkyl (methyl, ethyl, propyl, butyl or heptyl) or benzyl group. They are mainly used as preservatives in foodstuffs, cosmetics and pharmaceutical drugs. Parabens may act as weak endocrine disrupter chemicals, but controversy still surrounds the health effects of these compounds. Despite being used since the mid-1920s, it was only in 1996 that the first analytical results of their occurrence in water were published. Considered as emerging contaminants, it is useful to review the knowledge acquired over the last decade regarding their occurrence, fate and behavior in aquatic environments. Despite treatments that eliminate them relatively well from wastewater, parabens are always present at low concentration levels in effluents of wastewater treatment plants. Although they are biodegradable, they are ubiquitous in surface water and sediments, due to consumption of paraben-based products and continuous introduction into the environment. Methylparaben and propylparaben predominate, reflecting the composition of paraben mixtures in common consumer products. Being compounds containing phenolic hydroxyl groups, parabens can react readily with free chlorine, yielding halogenated by-products. Chlorinated parabens have been detected in wastewater, swimming pools and rivers, but not yet in drinking water. These chlorinated by-products are more stable and persistent than the parent species and further studies are needed to improve knowledge regarding their toxicity.


Assuntos
Água Doce/química , Parabenos/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Águas Residuárias/química
11.
Food Chem ; 162: 63-71, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24874358

RESUMO

The effect of sunlight exposure on chemical migration into PET-bottled waters was investigated. Bottled waters were exposed to natural sunlight for 2, 6 and 10 days. Migration was dependent on the type of water. Formaldehyde, acetaldehyde and Sb migration increased with sunlight exposure in ultrapure water. In carbonated waters, carbon dioxide promoted migration and only formaldehyde increased slightly due to sunlight. Since no aldehydes were detected in non-carbonated waters, we conclude that sunlight exposure has no effect. Concerning Sb, its migration levels were higher in carbonated waters. No unpredictable NIAS were identified in PET-bottled water extracts. Cyto-genotoxicity (Ames and micronucleus assays) and potential endocrine disruption effects (transcriptional-reporter gene assays) were checked in bottled water extracts using bacteria (Salmonella typhimurium) and human cell lines (HepG2 and MDA-MB453-kb2). PET-bottled water extracts did not induce any toxic effects (cyto-genotoxicity, estrogenic or anti-androgenic activity) in vitro at relevant consumer-exposure levels.


Assuntos
Técnicas In Vitro/métodos , Polietilenotereftalatos/análise , Luz Solar/efeitos adversos , Água/química , Água Potável , Humanos , Polietilenotereftalatos/química
12.
Sci Total Environ ; 481: 459-68, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24631609

RESUMO

The occurrence in urban wastewater of eight micropollutants (erythromycin, ibuprofen, 4-nonylphenol (4-NP), ofloxacin, sucralose, triclosan, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS)) originating from household activities and their fate in a biological wastewater treatment plant (WWTP) were investigated. Their concentrations were assessed in the liquid and solid phases (sewage particulate matter and wasted activated sludge (WAS)) by liquid chromatography-tandem mass spectrometry. The analysis of sewage from two different urban catchments connected to the WWTP showed a specific use of ofloxacin in the mixed catchment due to the presence of a hospital, and higher concentrations of sucralose in the residential area. The WWTP process removed over 90% of ibuprofen and triclosan from wastewater, while only 25% of ofloxacin was eliminated. Erythromycin, sucralose and PFOA were not removed from wastewater, the influent and effluent concentrations remaining at about 0.7 µg/L, 3 µg/L and 10 ng/L respectively. The behavior of PFOS and 4-nonylphenol was singular, as concentrations were higher at the WWTP outlet than at its inlet. This was probably related to the degradation of some of their precursors (such as alkylphenol ethoxylates and polyfluorinated compounds resulting in 4-NP and PFOS, respectively) during biological treatment. 4-NP, ofloxacin, triclosan and perfluorinated compounds were found adsorbed on WAS (from 5 ng/kg for PFOA to 1.0mg/kg for triclosan). The statistical methods (principal component analysis and multiple linear regressions) were applied to examine relationships among the concentrations of micropollutants and macropollutants (COD, ammonium, turbidity) entering and leaving the WWTP. A strong relationship with ammonium indicated that some micropollutants enter wastewater via human urine. A statistical analysis of WWTP operation gave a model for estimating micropollutant output from the WWTP based on a measurement of macropollution parameters.


Assuntos
Monitoramento Ambiental , Eliminação de Resíduos Líquidos/estatística & dados numéricos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Ácidos Alcanossulfônicos/análise , Caprilatos , Cidades/estatística & dados numéricos , Eritromicina/análise , Fluorocarbonos/análise , Habitação/estatística & dados numéricos , Ibuprofeno/análise , Ofloxacino/análise , Fenóis/análise , Sacarose/análogos & derivados , Sacarose/análise , Triclosan/análise , Águas Residuárias/estatística & dados numéricos
13.
Arch Environ Contam Toxicol ; 66(1): 86-99, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23921451

RESUMO

The main objective of this study was to evaluate potential exposure of a significant part of the French population to alkylphenol and bisphenol contaminants due to water consumption. The occurrence of 11 alkylphenols and bisphenols was studied in raw water and treated water samples from public water systems. One sampling campaign was performed from October 2011 to May 2012. Sampling was equally distributed across 100 French departments. In total, 291 raw water samples and 291 treated water samples were analyzed in this study, representing approximately 20 % of the national water supply flow. The occurrence of the target compounds was also determined for 29 brands of bottled water (polyethylene terephthalate [PET] bottles, polycarbonate [PC] reusable containers, and aluminum cans [ACs]) and in 5 drinking water networks where epoxy resin has been used as coating for pipes. In raw water samples, the highest individual concentration was 1,430 ng/L for bisphenol A (BPA). Of the investigated compounds, nonylphenol (NP), nonylphenol 1-carboxylic acid (NP1EC), BPA, and nonylphenol 2-ethoxylate (NP2EO) predominated (detected in 18.6, 18.6, 14.4, and 10 % of samples, respectively). Geographical variability was observed with departments crossed by major rivers or with high population densities being more affected by contamination. In treated water samples, the highest individual concentration was 505 ng/L for NP. Compared with raw water, target compounds were found in lower amounts in treated water. This difference suggests a relative effectiveness of certain water treatments for the elimination of these pollutants; however, there is also their possible transformation by reaction with chlorine. No target compounds were found in drinking water pipes coated with epoxy resin, in PET bottled water, or in water from ACs. However, levels of BPA in PC bottled water ranged from 70 to 4,210 ng/L with greater level observed in newly manufactured bottles. 4-Tert-butylphenol was only detected in recently manufactured bottles. The values observed for the monitored compounds indicate that drinking water is most likely not the main source of exposure.


Assuntos
Água Potável/química , Exposição Ambiental/estatística & dados numéricos , Fenóis/análise , Poluentes Químicos da Água/análise , Compostos Benzidrílicos/análise , Exposição Ambiental/análise , França , Humanos , Purificação da Água
14.
J Chromatogr A ; 1315: 36-46, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24094751

RESUMO

In this study, an automated method for the simultaneous determination of polycyclic aromatic hydrocarbons (PAHs) and their chlorination by-products in drinking water was developed based on online solid-phase microextraction-gas chromatography-mass spectrometry. The main focus was the optimisation of the solid-phase microextraction step. The influence of the agitation rate, type of fibre, desorption time, extraction time, extraction temperature, desorption temperature, and solvent addition was examined. The method was developed and validated using a mixture of 17 PAHs, 11 potential chlorination by-products (chlorinated and oxidised PAHs) and 6 deuterated standards. The limit of quantification was 10 ng/L for all target compounds. The validated method was used to analyse drinking water samples from three different drinking water distribution networks and the presumably coal tar-based pipe coatings of two pipe sections. A number of PAHs were detected in all three networks although individual compositions varied. Several PAH chlorination by-products (anthraquinone, fluorenone, cyclopenta[d,e,f]phenanthrenone, 3-chlorofluoranthene, and 1-chloropyrene) were also found, their presence correlating closely with that of their respective parent compounds. Their concentrations were always below 100 ng/L. In the coatings, all PAHs targeted were detected although concentrations varied between the two coatings (76-12,635 mg/kg and 12-6295 mg/kg, respectively). A number of chlorination by-products (anthraquinone, fluorenone, cyclopenta[d,e,f]phenanthrenone, 3-chlorofluoranthene, and 1-chloropyrene) were also detected (from 40 to 985 mg/kg), suggesting that the reaction of PAHs with disinfectant agents takes place in the coatings and not in the water phase after migration.


Assuntos
Água Potável/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Microextração em Fase Sólida/métodos , Abastecimento de Água/análise , Acetatos/química , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Temperatura
15.
Sci Total Environ ; 463-464: 355-65, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23827359

RESUMO

The impact of eight household micropollutants (erythromycin, ofloxacin, ibuprofen, 4-nonylphenol, triclosan, sucralose, PFOA and PFOS (PFAAs)) on the laboratory bacterial strain Escherichia coli MG1655 and on activated sludge from an urban wastewater treatment plant was studied. Growth-based toxicity tests on E. coli were performed for each micropollutants. The effect of micropollutants on activated sludge (at concentrations usually measured in wastewater up to concentrations disturbing the bacterial growth of E. coli) was examined in batch reactors and by comparison to a control reactor (without micropollutants). The bound extracellular polymeric substances (EPS) secreted by the sludge were measured by size exclusion chromatography and their overexpression was considered as an indicator of bacteria sensitivity to environmental changes. The chemical oxygen demand (COD) and the ammonium concentration were monitored to evaluate the biomass ability to remove the macropollution. Some micropollutants induced an increase of bound EPS in activated sludge flocs at concentrations depending on the micropollutant: erythromycin from 100 µg/L, ofloxacin from 10 µg/L, triclosan from 0.5 µg/L, 4-nonylphenol from 5000 µg/L and PFAAs from 0.1 µg/L. This suggests that the biomass had to cope with new conditions. Moreover, at high concentrations of erythromycin (10 mg/L) and ibuprofen (5 mg/L) bacterial populations were no longer able to carry out the removal of macropollution. Ibuprofen induced a decrease of bound EPS at all the studied concentrations, probably reflecting a decrease of general bacterial activity. The biomass was not sensitive to sucralose in terms of EPS production, however at very high concentration (1 g/L) it inhibited the COD decrease. Micropollution removal was also assessed. Ibuprofen, erythromycin, ofloxacin, 4-nonylphenol and triclosan were removed from wastewater, mainly by biodegradation. Sucralose and PFOA were not removed from wastewater at all, and PFOS was slightly eliminated by adsorption on sludge.


Assuntos
Eritromicina/farmacologia , Escherichia coli/efeitos dos fármacos , Ofloxacino/farmacologia , Fenóis/farmacologia , Esgotos/química , Triclosan/farmacologia , Águas Residuárias/química , Poluentes Químicos da Água/farmacologia , Eritromicina/análise , Ibuprofeno/análise , Ibuprofeno/farmacologia , Ofloxacino/análise , Fenóis/análise , Compostos Policíclicos/análise , Compostos Policíclicos/farmacologia , Esgotos/microbiologia , Testes de Toxicidade , Triclosan/análise , Águas Residuárias/microbiologia , Poluentes Químicos da Água/análise
16.
Food Chem ; 139(1-4): 672-80, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23561160

RESUMO

The purpose of this study was to investigate the impact of temperature on the release of PET-bottle constituents into water and to assess the potential health hazard using in vitro bioassays with bacteria and human cell lines. Aldehydes, trace metals and other compounds found in plastic packaging were analysed in PET-bottled water stored at different temperatures: 40, 50, and 60°C. In this study, temperature and the presence of CO2 increased the release of formaldehyde, acetaldehyde and antimony (Sb). In parallel, genotoxicity assays (Ames and micronucleus assays) and transcriptional-reporter gene assays for estrogenic and anti-androgenic activity were performed on bottled water extracts at relevant consumer exposure levels. As expected, and in accordance with the chemical formulations specified for PET bottles, neither phthalates nor UV stabilisers were present in the water extracts. However, 2,4-di-tert-butylphenol, a degradation compound of phenolic antioxidants, was detected. In addition, an intermediary monomer, bis(2-hydroxyethyl)terephthalate, was found but only in PET-bottled waters. None of the compounds are on the positive list of EU Regulation No. 10/2011. However, the PET-bottled water extracts did not induce any cytotoxic, genotoxic or endocrine-disruption activity in the bioassays after exposure.


Assuntos
Água Potável/análise , Polietilenotereftalatos/análise , Poluentes Químicos da Água/análise , Linhagem Celular , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Expressão Gênica/efeitos dos fármacos , Humanos , Testes de Mutagenicidade , Plásticos/efeitos adversos , Plásticos/análise , Polietilenotereftalatos/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Temperatura , Poluentes Químicos da Água/toxicidade
17.
Bull Environ Contam Toxicol ; 89(3): 525-30, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22706876

RESUMO

Perfluorinated compounds (PFCs) have been recognized as global environmental pollutants. They are used in various applications and high levels have been found in water bodies located near highly industrialized sites. In the present study, 10 PFCs were quantitatively determined in water samples collected in the vicinity of a fluoropolymer manufacturing plant and in drinking water resources located downstream. The release of PFHxA and PFNA to the receiving river was estimated at 10 and 4.5 tons/year, respectively. PFHxA (0.058-0.156 µg/L), PFNA (0.013-0.035 µg/L) and PFOA (0.007-0.025 µg/L) were predominant and prevalent in all the studied drinking water resources, confirming with the composition profile the impact of the industrial park release.


Assuntos
Indústria Química , Fluorocarbonos/análise , Resíduos Industriais , Polímeros/síntese química , Águas Residuárias , Poluentes Químicos da Água/análise , Rios , Abastecimento de Água
18.
Bull Environ Contam Toxicol ; 89(3): 531-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22699711

RESUMO

In this study, the concentrations of 10 perfluorinated compounds (PFCs) were measured in effluents of a fluorotelomer polymer manufacturing plant and its wastewater treatment plant. A 50-fold increase between the two effluents mass flows was observed. The water quality of two drinking water treatment plants located downstream at 15 and 25 km from the manufacturing plant was examined. An increase of the sum of PFCs was observed between the river (30 ng/L) and an alluvial well (70 ng/L), and between the raw water (9 ng/L) and the outlet of a biological treatment (97 ng/L). These results indicate a possible degradation of fluorotelomers, occurring during wastewater treatment, sediment infiltration in the alluvial aquifer, and drinking water treatment.


Assuntos
Indústria Química , Fluorocarbonos/análise , Resíduos Industriais , Polímeros/síntese química , Águas Residuárias , Poluentes Químicos da Água/análise , Rios , Abastecimento de Água
19.
Arch Environ Contam Toxicol ; 63(1): 1-12, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22402780

RESUMO

The occurrence of seven perfluoroalkyl carboxylates (PFCAs) and three perfluoroalkyl sulfonates (PFASs) was studied in raw- and treated-water samples from public water systems. Two sampling campaigns were performed during the summer of 2009 and in June 2010. Sampling was equally distributed across the 100 French departments. In total, 331 raw-water samples and 110 treated-water samples were analyzed during this study, representing approximately 20% of the national water supply flow. Concentrations of perfluorinated compounds (PFCs) were determined using automated solid-phase extraction and liquid chromatography-tandem mass spectrometry. In raw-water samples, the highest individual PFC concentration was 139 ng/L for perfluorohexanoic acid (PFHxA). The sum of all of the determined components was >100 ng/L at three sampling points (199, 117, and 115 ng/L). Of the investigated PFCs, perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), perfluorooctanoic acid (PFOA), and PFHxA predominated (detected in 27%, 13%, 11%, and 7% of samples, respectively). Geographical variability was observed, with departments crossed by major rivers or with high population densities being more affected by PFC contamination. Compared with raw water, short-chain PFCAs, but not PFASs, were found in higher abundance in treated water. This difference suggests a relative effectiveness of certain water treatments for the elimination of PFASs but also a possible degradation of PFCA precursors by water-treatment processes. Our investigations did not show any heavily contaminated sites. In treated-water samples, the highest individual PFC concentration was 125 ng/L for PFHxA. The sum of all of the determined components was >100 ng/L at one sampling point (156 ng/L). The values observed for PFOS and PFOA in drinking water were not greater than the health-based drinking-water concentration protectives for lifetime exposure that have been defined for other countries.


Assuntos
Água Potável/análise , Água Potável/química , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Ácidos Alcanossulfônicos/análise , Caproatos/análise , Caprilatos/análise , Ácidos Carboxílicos/análise , Fluorocarbonos/análise , França , Rios/química
20.
Water Res ; 44(18): 5168-79, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20663536

RESUMO

Epidemiological studies have demonstrated that chlorination by-products in drinking water may cause some types of cancer in humans. However, due to differences in methodology between the various studies, it is not possible to establish a dose-response relationship. This shortcoming is due primarily to uncertainties about how exposure is measured-made difficult by the great number of compounds present-the exposure routes involved and the variation in concentrations in water distribution systems. This is especially true for trihalomethanes for which concentrations can double between the water treatment plant and the consumer tap. The aim of this study is to describe the behaviour of trihalomethanes in three French water distribution systems and develop a mathematical model to predict concentrations in the water distribution system using data collected from treated water at the plant (i.e. the entrance of the distribution system). In 2006 and 2007, samples were taken successively from treated water at the plant and at several points in the water distribution system in three French cities. In addition to the concentrations of the four trihalomethanes (chloroform, dichlorobromomethane, chlorodibromomethane, bromoform), many other parameters involved in their formation that affect their concentration were also measured. The average trihalomethane concentration in the three water distribution systems ranged from 21.6 µg/L to 59.9 µg/L. The increase in trihalomethanes between the treated water at the plant and a given point in the water distribution system varied by a factor of 1.1-5.7 over all of the samples. A log-log linear regression model was constructed to predict THM concentrations in the water distribution system. The five variables used were trihalomethane concentration and free residual chlorine for treated water at the plant, two variables that characterize the reactivity of organic matter (specific UV absorbance (SUVA), an indicator developed for the free chlorine consumption in the treatment plant before distribution δ) and water residence time in the distribution system. French regulations impose a minimum trihalomethane level for drinking water and most tests are performed on treated water at the plant. Applied in this context, the model developed here helps better to understand trihalomethane exposure in the French population, particularly useful for epidemiological studies.


Assuntos
Modelos Químicos , Trialometanos/análise , Abastecimento de Água/análise , França , Análise Multivariada , Análise de Regressão , Fatores de Tempo , Incerteza , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...